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The applicability of Howard’s formula is considered in cases where there exist critical 
layers at the boundaries in addition to one inside the Aow field. It is shown that in a 
few particular cases Howard’s formula can be applied provided that the finite part 
of an otherwise diverging integral is taken. In  general, however, this revised formula is 
not valid and an expression analogous to the one given by Banks, Drazin & Zaturska 
for a particular example is found. 

1. Introduction 
In  a paper by Huppert (1973) the validity of t.he formula which Howard developed 

in connexion with perturbing neutral solutions of the Taylor-Goldstein equation is 
considered. Among the examples which he considers there is one with a non-monotonic 
velocity profile in which there are critical layers at  the boundaries in addition to the 
one inside the flow field. It is easily seen that one of the integrals which enters Howard’s 
formula does not exist in the ordinary sense in this case. However, it seems to us that 
Huppert adopts (without saying so) the rule that the finite part of that integral is to 
be taken, and applies Howard’s formula with this rule in mind. The rule of taking the 
finite part of the integrals is correct in cases where the critical layers are situated 
within the flow field (see Howard 1963; or Engevik 1973). In a recent paper Banks, 
Drazin & Zaturska (1976) re-examined this example of Huppert. They solve the 
eigenvalue problem numerically and find that on part of the stability boundary 
Huppert’s result does not give the correct value of ci (the imaginary part of c,  the 
wave velocity). On this part of the stability boundary Banks et al. obtain an expres- 
sion for ci, based on Howard’s formula, which differs from the one given by Huppert. 
They find that the dominant contribution to one of the integrals comes from the 
regions near the boundaries, and this contribution is not taken into account by 
Huppert. The values of ci obtained from their theoretical expression are found to be 
in good agreement with their numerical results. However, since their expression for ci 
is based on Howard’s formula, they conclude correctly that ‘the logical justification 
for the result is poor’ (p. 164). 

The purpose of this note is twofold. First, we show that the rule of taking the finite 
part of an (otherwise diverging) integral may be correct in some cases, and that in 
Huppert’s example this happens to be true on part of the stability boundary. Second, 
we prove the expression for ci obtained by Banks et al. to be correct. 

Our investigation is based on a method given in a paper by Engevik (1973). 
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2. The general theory 
Let the stream function corresponding to an infinitesimal disturbance in a parallel, 

two-dimensional, inviscid, heterogeneous shear flow be denoted by $ ( z )  eik(X-Ct). If the 
Boussinesq approximation is made, the amplitude function $ ( z )  satisfies the Taylor- 

J N 2  Goldstein equation 

Here U ( z )  is the basic flow velocity, N ( z )  the buoyancy frequency, J a (representative) 
Richardson number, k the wavenumber and c the wave velocity (which may be com- 
plex). If the fluid is confined between two rigid horizontal planes a t  z = zl, z2 the 

(2.2) 
boundary conditions are Q = 0 a t  z = z1,z2. 

In  this note we assume that thore is just one critical layer within the flow field, 
situated at  z = z,, and that U’(z,) > 0. However there may be further critical layers 
a t  the boundaries. 

Let a neutral solution be denoted by Q, and the corresponding wavenumber, 
Richardson number and wave velocity by k,, J ,  and c, respectively. The neutral 
solutions may have contiguous unstable solutions, but there also exist situations 
where this is not true as shown at  the end of this section; examples of this are given 
by Huppert (1973). Now let Q denote an unstable solution contiguous to 4, and 
proceed as in Engevik (1973) to obtain 

(Il - I,) ( C  - c,) + 13(J - J,)  - 14(k2 - ki)  = 0, (2.3) 

The integration is from z1 to z2 along a contour L which circumverlts the critical point 
a t  z, in the correct way (Engevik 1973). Analyticity of U and N 2  for z1 < z < z2 is 
assumed, and arg ( U  - c,) is defined to be zero for U - c, > 0 and - n- for U - c, < 0. 

If there are no critical layers at  the boundaries, we can use (2.3) to derive Howard’s 
formula for (8c/ak2)J,v and a formula for (a~ /aJ ) ,~ .  If the denominator in these 
formulae (obtained by putting c = c, and 4 = $, in 11- I,) becomes zero, we have 
to expand (2.3) to take into account the term in (c  - c,),. Then formulae for 

( a ( C  - Cs)2/ak2)Js and ( a ( C  - Cs)2/aJ)k. 

can be found (Engevik 1973, 1975). I n  a particular case with a given velocity and 
density profile Banks & Drazin (1  973) have found the expression for (a(c - cs)2/ak2)J8 
essentially along these lines. 

In  the following we assume that there are critical layers at  the boundaries in addition 
to the one within the flow field and that U’ -+ 0 at z = zl, z2. If we assume also that N 
is not equal to zero at  z = zl, z2 then Howard’s formula is not valid, because at  least 
one of the integrals in this formula does not exist. However, (2.3) is still valid and 
from this equation we can find c - c, as a function of k2 - k: when k - t  k, with J = J ,  
fixed or as a function of J - J ,  when J - +  J, with k = k, fixed. We give the general 
procedure here and show how it works out in a particular example in the next section. 
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First assume that the neutral solution near the boundaries is given by 

(2 .6 )  

Herep = ($-Rl,2)4, where R = (J,Nz/U'2) with R, = R(z,) and R, = R(z,). a,,,isthe 
amplitude near z,,,. We assume that there exists an unstable solution q5 contiguous 
to the neutral one. If c - c, is small enough, we find that near z,, 

(2.6) 

where we have used the fact that qi must be equal to zero at  z = z , , ~ .  We see from (2.6J. 
that, when c +c,, qi -f qis for z near Let E > 0 be chosen so small that in theinterva$ 
(z,, z1 +c)  and (z, - E ,  z 2 )  9, is given by (2.5) and $by (2.6). We write 

qi = { n l , , [ ( U ( z ) - c ) t + ~ -  ( c s - c ) 2 ~ ( U ( Z ) - c ) ~ - q +  ...}, 

In  this expression we first keep E fixed and let c - c, tend to zero, then let E tend to zero. 
When we keep E fixed and let c -f c, we find that in the first and third integral on the 
right-hand side of (2.7) we have to use the expression (2.6) for qi. Into these integrals 
we introduce a new variable v given by U ( z )  - c, = (c  - c,) v, and find that 

Here N, = N(z , ) ,  N, = N(z,), U; = U'(z,) and U;1 = 

given by two integrals which are easily found. Also 

Substituting (2.8) and (2.9) into (2.7), we obtain 

U '(2,). K,  and K,  are two constants 

as c - t c , .  (2.9) 

I, -+ Js(Kl + K , )  ( c  - ~, ) -1+2/~  + 2P / dz as c + cs, 
L ( [J - C A 3  

(2.10) 

where P in front of the integral sign means that the finite part of the integral is to be 
taken. Also 

We notice that the integrals in (2.11) become the same as the corresponding ones in 
Howard's formula, which was developed for a regular base with no critical layers at  
the boundaries. For the integral (2.10), however, there is a difference between these 
two cases. 

For the integral I, in (2.10) we have the two possibilities: 
(i) K ,  + K ,  = 0, when the limiting value of I, is found by taking the finite part of 

(ii) K ,  + K ,  + 0,  when the dominant term is J,(K, + K 2 )  (c  - C , ) - ~ + ~ Y .  

By substituting (2.10) and (2.11) into (2.3) we can find c - c ,  as a function of k2- kt 

the corresponding integral in Howard's formula; 

when k+ k, with J = J, fixed or as a function of J - J ,  when J -f J ,  with k = ks fixed. 
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Now suppose that the neutral solution near the boundaries is given by 

$, = {%, 2( - cs)4-Y + * .}, 

and assume that there exists an unstable solution $ contiguous to this neutral one. If 
$ is equal to zero at  z = zl, 2, it must be given by 

Q = {ul,2[(u(z)-c)a-~- ( C s - C ) - 2 ~ ( U ( Z ) - c ) d + q +  ...). 

But this means that $ does not tend to 9, when c -+ c, in contradiction of our assump- 
tion. We cannot have any unstable solution contiguous to this neutral one and 
application of Howard's formula has no meaning at all. 

3. An example 

there exist the neutral solutions 
We consider the case U = sinz, N 2  = 1 and -zl = z2 = n- (Huppert 1973), for which 

(3.1) 

where the plus sign is valid when 0 < k, < $J3 and the minus sign when 3 4 3  < k, < 1 ,  
and (Thorpe 1969) 

c, = 0, #, = (cos  sin $z)ATfL, where ,u = (2 - J$, 

1 c, = 0, Q, = (sinz)h*p, where ,u = (&-4)4, 
J ,  = ( i - k : ) * - i + k i ,  0 < k., < 1 ,  

} (3.2) 
k, = $ 4 3 ,  0 < J ,  6 4. 

The neutral solutions corresponding to the lower signs in (3.1) and (3.2) have no 
contiguous unstable solutions. This follows from the result at the end of 8 2 and is in 
agreement with the  results of Hazel (1972), who made a numerical investigation of 
this problem and found that these solutions are isolated neutral solutions. 

First let the neutral solution be given by the one with the upper sign in (3.1). We 
put k = k, in (2.3) and evaluate the integrals I,, I, and Is, into which we substitute the 
expressions for U ,  N2, $s and $, where 

1 near z = m, 
$5, = (n-z)t+/l 

$ = (n - 2 - C ) t + / <  - ( - c)2'(* - 2 - 

When evaluating Il we find that Kl = - K ,  = e - 2 n i p K ,  where 

K = JOm v-%fl"((v + 1)-%+a - ( v  + 1)-S- p } { 2v+l}dv.  (3.3) 

This is consequently an example where we should have obtained the correct result by 
taking the finite part of the corresponding diverging integral in Howard's formula. 
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Both this finite part and the values of I, and I, given by (2.11) are easily found, and 
we obtain 

c ( p  + 1) (1  - 2 p )  cos npB(p + 3, +) + i (J  - 4) sin npB(p, $) = 0. 13.4) 

In  this equation we have neglected terms of order c2@+l since they we small compared 
with c. However, these terms will account for the singular behaviour of the second 
derivative of c with respect to  J which the numerical results of Banks et al. suggest. 
Equation (3.4) admits a pure imaginary solution c = ic, with ci > 0 which is equivalent 
to the one obtained by Huppert (1 973). 

Next let the neutral solution be given by the one with the upper signs in ( 3 . 2 ) .  
We put J = J, in (2.3) and evaluate the integrals I,, I, and I,, where now 

near z = ?r, I q5, = (+)A+p(n-z)++a 

# = (+)t+. [(n - z - C ) t + F  - ( - C ) 2 P  (77 - 2 - c)&-’] 

In  this case we find that K, = ( $ ) 1 + 2 p e 2 n i p K  and K ,  = - (&)1+2pe-2nip K ,  where K is 
given by (3.3), and that the finite part of the integral in (2.10) is zero. Substituting the 
expressions for I,, l2 and I, into ( 2 . 3 )  yields 

i&( +)4 sin 2npKc2@ + ?rein@ c + 2nip ein@ ( k2 - k;) = 0. ( 3 . 5 )  

Notice that in deriving (3.4) and (3.5) we have not made any assumption about the 
unstable solution being pure imaginary. However (3.5) does admit a pure imaginary 
solution c = ic, with ci > 0. It can be shown that K has the value 2 p / &  so that the 
expression for ci obtained from (3 .5 )  equals the one given by Banks et al. and we 
have thus given a logical justification for their result. 

4. Conclusion 
In  cases where there exist critical layers at  the boundaries, Howard’s formula is 

not valid because one of the integrals does not exist. However, provided that the 
finite part of this diverging integral is taken, the formula is shown to be applicable 
in some particular cases. This is true on part of the stability boundary in the case 
U = sinz, N2 = 1 with the boundaries at  z = & n. 

However, in general an equation of the form ac2p + bc + d(k2 - k:) + e (J  - 4) = 0 
is valid, where a, b, d and e are constants. In  the particular example mentioned above 
we obtain an expression for c equal to the one found by Banks et al. Our result is based 
on a method which is valid in this case, and we have consequently given a logical 
justification for the result of Banks et al., which is based on Howard’s formula. 
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